The researchers have worked to tackle these important concerns by using Convolutional Neural Networks (CNN) — hierarchical neural networks highly effective in recognising patterns and structures in data. “We trained and tested the CNN model on large publicly available ECG datasets featuring subjects with CHF as well as healthy, non-arrhythmic hearts. Our model delivered 100 per cent accuracy: by checking just one heartbeat we are able detect whether or not a person has heart failure,” said study researcher Sebastiano Massaro, Associate Professor at the University of Surrey in the UK.
“Our model is also one of the first known to be able to identify the ECG’ s morphological features specifically associated to the severity of the condition,” Massaro said. Published in Biomedical Signal Processing and Control Journal, the research drastically improves existing CHF detection methods typically focused on heart rate variability that, whilst effective, are time-consuming and prone to errors. Conversely, their new model uses a combination of advanced signal processing and machine learning tools on raw ECG signals, delivering 100 per cent accuracy.
No comments :
Post a Comment